

Telefone: __

OLIMPÍADA PIAUIENSE DE QUÍMICA – 2016 Modalidade EM2 - 12/11/2016 FASE II

INSTRUÇÕES

1 – Esta prova c	ontém cinco questões no total, sendo todas elas de múltipla escolha.			
	ciar a prova, <i>confira se todas as folhas estão presentes, <u>com os espaços para</u> Caso haja algum problema, solicite a substituição da prova.</i>			
3 – <u>O tempo de</u>	duração da prova é de 3h. A prova inicia-se as 14:00h e encera-se as 17:00h			
5 – Não será pe	rmitido o uso de calculadoras programaveis.			
6 – Ao terminar	a prova, entregue-a ao aplicador.			
7 – Não esqueça de preencher a ficha de identificação, destaca-la e entregar ao aplicador da aprova, juntamente com as folhas de resposta				
	tifique em nenhuma folha de resposta, coloque apenas o código que você dentificação em qualquer folha de reposta eliminará a referida questão.			
IMPORTANTE: A prova desta modalidade (EM2) é constituída de 5 (cinco) questões subjetivas, valendo 20 (vinte) pontos cada uma.				
Destaque aqui -				
Identificação	Modalidade EM2			
	Código:			
Nome:				
Escola:				
Endereço:				

CÓDIGO DO ALUNO (escreva aqui seu código)

01- Acredita-se que a fotossíntese é um eficiente modo de conversão de energia luminosa. Considere a equação química global da fotossíntese realizada por plantas verdes na forma:

$$H_2O(I) + CO_2(g) = CH_2O(s) + O_2(g)$$

onde CH_2O representa o carboidrato formado. Embora a glicose não seja o principal produto orgânico da fotossíntese, é comum considerar CH_2O como 1/6 da glicose $(C_6H_{12}O_6)$.

- a) Calcule a entalpia padrão da reação acima, a 298 K. (6 pontos)
- b) Calcule a energia de Gibbs padrão para a reação acima, a 298 K. (7 pontos)
- c) Assumindo que a reação é dirigida pela energia luminosa somente (com comprimento de onda média, λ = 680 nm), determine o número mínimo de fótons necessários para produzir uma molécula de oxigênio. (7 pontos)

Dados:

Substância	H₂O (I)	CO ₂ (g)	O ₂ (g)	C ₆ H ₁₂ O ₆ (s)
Energia padrão de				
combustão: $\Delta_c H_{298}^0$	-	-	-	-2805
(kJ/mol)				
Entropia padrão: S^0_{298}	70,0	213,8	205,2	209,2
(J/K.mol)				

Energia de um mol de

fótons:

$$E_{\rm m} = \frac{hcN_{\rm A}}{\lambda}$$

Constante de Planck

$$h = 6,63 \times 10^{-34} \text{ J.s}$$

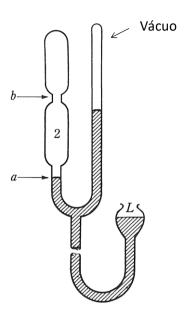
Velocidade da luz

$$c = 3 \times 10^8 \text{ m/s}$$

(vácuo)

$$N_A = 6 \times 10^{23} \text{ mol}^{-1}$$

Número de Avogadro



- **02-** Uma mistura de oxigênio e hidrogênio é analisada passando através de um tubo com uma agente secante e com óxido de cobre (II) aquecido. O hidrogênio reduz o CuO para cobre metálico formando água. O oxigênio re-oxida o cobre formado. 100 mL de uma mistura medida a 25 °C e 750 mmHg gera 84,5 mL de oxigênio seco medido a 25 °C e 750 mmHg após a passagem sobre o CuO e o agente secante.
 - a) Escreva as duas equações químicas citadas. (6 pontos)
 - b) Qual a porcentagem de hidrogênio e oxigênio na mistura original? (14 pontos)
- O3- Crômio é um metal lustroso, branco-prateado, cujo nome (do grego, *Chroma* que significa cor) remete aos seus muitos compostos coloridos. As cores brilhosas dos compostos de crômio (VI) levam aos seus usos como pigmentos por muitos pintores de telas e de vasos de cerâmica.
 - a) Em solução ácida, o íon cromato amarelo (CrO_4^{2-}) muda para o íon dicromato laranja ($Cr_2O_7^{2-}$). Escreva a equação da reação. (4 pontos)
 - b) Qual o estado de oxidação de cada centro metálico nos íons cromato e dicromato? (4 pontos)
 - c) A reação é de oxidação-redução? Explique. (3 pontos)
 - d) Qual o principal fator que controla a posição do equilíbrio da reação? (4 pontos)
 - e) Desenhe as estruturas tridimensionais dos íons cromato e dicromato. (5 pontos)
- **04-** Hélio está contido a 30,2 °C no sistema ilustrado na Figura abaixo. O nível do bulbo *L* pode ser ajustado tal que se preencha o bulbo mais baixo como mercúrio e force o gás para dentro da parte de cima do dispositivo. O volume do bulbo 1 até a marca *b* é desconhecido e o volume do bulbo 2 entre as marcas *a* e *b* é 110,0 cm³. A pressão exercida pelo hélio é medida pela diferença entre os níveis do mercúrio no dispositivo e no ramo evacuado do manômetro. Quando o nível do mercúrio está em *a*, a diferença entre os níveis é 15,42 mm. Quando o nível do mercúrio está em *b*, a diferença entre os níveis é 27,35 mm. A massa específica do mercúrio a 30,2 °C é 13,5212 g/cm³ e a aceleração da gravidade é 9,80665 m/s².
 - a) Qual a massa de hélio no sistema? (10 pontos)
 - **b**) Qual o volume do bulbo 1? (10 pontos)

- **05-** As substâncias gasosas A_2 e B_2 são misturadas numa razão molar de 2:1 em um vaso reacional fechado, à temperatura T_1 . Quando o equilíbrio $A_2(g) + B_2(g) = 2AB(g)$ é estabelecido o número de moléculas heteronucleares na fase gasosa se torna igual ao número total de moléculas homonucleares.
 - a) Determine a constante de equilíbrio K₁ para a reação. (5 pontos)
 - b) Encontre a razão entre o número de moléculas heteronucleares e o número total de moléculas homonucleares no equilíbrio, se as substâncias forem misturadas em uma razão molar de 1:1, à temperatura T₁. (5 pontos)
 - c) A mistura em equilíbrio obtida a partir da mistura inicial de A_2 : B_2 = 2:1 é aquecida até a temperatura T_2 , tal que a nova constante de equilíbrio K2 seja metade da constante de equilíbrio K1 (K2 = K1/2). Quanto da substância B_2 (em porcentagem da quantidade inicial) deve ser adicionada ao vaso com o objetivo de manter as mesmas quantidades de equilíbrio de A_2 e AB que existiam na temperatura T_1 ? (10 pontos)

Dados:

	hc hc			
Energia de um fóton:	$E = \frac{hc}{\lambda}$			
Constante de Planck	$h = 6,63 \times 10^{-34} \text{ J.s}$			
Velocidade da luz	c = 3 x 10 ⁸ m/s			
(vácuo)				
Equação de Rydberg	$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$			
n_1 e n_2 = níveis na transição.				
Constante de Rydberg	$R_{\rm H} = 1.1 \times 10^7 \rm m^{-1}$			
para o hidrogênio				